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A comprehensive study of the static and dynamical properties of a representative stochastic model of
Brownian ratchet effects for molecular motors is reported. The model describes Brownian motions on two
periodic potentials under static and time-dependent forces, where there are two distinct locations of chemical
reactions coupling the levels with reversible rates within a period. Complete stationary properties have been
obtained analytically for arbitrary potentials under external force. Dynamical relaxation properties near non-
equilibrium stationary states were examined by considering the response function of velocity upon time-
dependent external force, expressed in terms of the conditional probability density of the model. The latter is
fully calculated using a systematic numerical method using matrix diagonalization, which is easily generalized
to more complicated models for studying both static and dynamical properties. The behavior of the time-
dependent response examined for model potentials suggests that the characteristic relaxation time near station-
ary states generally decreases linearly with respect to increasing velocity as one goes away from equilibrium
via an increase in chemical potential of fuel species, a prediction testable in single molecule experiments.
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I. INTRODUCTION

Driven systems in nanoscale exhibit many nontrivial fea-
tures distinct from properties in equilibrium. Of particular
interest are those seen in systems exhibiting chemomechani-
cal coupling including molecular motor proteins �1�, where
chemical free energy of fuel species such as adenosine triph-
osphate �ATP� is converted into mechanical work. Modern
single molecule experiments �2–4� now provide data that can
be used to aid and test theoretical treatments. Basic theoret-
ical framework for such treatments is provided by the sto-
chastic dynamical models, including continuous variable
Fokker-Planck formalisms �5–22�. To varying degrees the
models incorporate the concept of Brownian ratchet effects,
where thermal fluctuations are harnessed via external con-
trols such as chemical or biochemical reactions driven by
nonequilibrium conditions.

Most of the studies using stochastic models of motors,
however, have so far mainly been focused on static proper-
ties, and relatively little is known about the dynamical relax-
ation behavior exhibited by such systems away from equilib-
rium. Basic stochastic differential equations have unique
stationary solutions �23,24� to which all transient states
evolve in the long time limit. Characteristics of this relax-
ation behavior, intimately connected to spontaneous fluctua-
tions only when the stationary state is an equilibrium state,
potentially have many important implications to the behavior
of nanoscale motors and devices: Single molecule experi-
ments using optical tweezers often probe responses in veloc-
ity to changes in external force, while control of artificial
nanoscale devices would critically depend on their response
characteristics to external perturbations.

In this paper, we systematically examine the dynamical
relaxation behavior of nanoscale motors toward nonequilib-
rium stationary states using a representative version of
Brownian ratchets �11,12�, containing two level periodic po-
tentials coupled by reactions. Stationary properties of this

model have previously been studied numerically for a choice
of piecewise linear potentials in Ref. �25�. The model and its
basic stochastic dynamics are defined in the next section, and
in Sec. III, the analytical solution for stationary properties
valid for arbitrary potentials and external force is derived. In
Sec. IV, linear response theory is first applied to relate the
response function of velocity near nonequilibrium stationary
states to the probability densities of the model. A general
procedure for calculating both the time-dependent condi-
tional probability and stationary properties is then developed.
Features of the response function and its characteristic relax-
ation time are examined as functions of model parameters
governing the departure from equilibrium in Sec. V. Section
VI contains concluding discussions.

II. TWO LEVEL MODEL

The model adopted is illustrated in Fig. 1, which is a
version of fluctuating potential ratchet models �9,11�: A one-
dimensional stochastic variable x undergoes Brownian mo-
tion under two potentials

Gn�x� = Gn
�0��x� − f0x �1�

with n=1,2 and a static external force f0. The potentials Gn
�0�

are periodic with the period taken as the unit of length, such
that Gn

�0��x+ l�=Gn
�0��x� with integer l. The two levels are

coupled by reactions localized at two positions x1 and x2
within a period, with rates k1 �k−1� for the transition n=2
→1 �1→2� at x1, and k2 �k−2� for the transition n=1→2
�2→1� at x2. For processive motors where x is the displace-
ment of a motor complex �or the rotation angle for rotary
motors�, the two levels G1 and G2 may correspond to bound
and unbound states or different conformational states of the
protein.

The average value of an observable of interest An�x , t� is
given by
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�A� = �
n
� dxAn�x,t�Pn�x,t� , �2�

where the sum is over states n=1,2, the integration is over
all accessible ranges of x, and Pn�x , t� is the probability den-
sity to find the system on the level n and position x at time t.
Considerations of the time evolution of Pn�x , t� are facilitated
via the conditional probability Pnm�x , t 	x0 ,0� to observe x on
the level n at time t given that the system was at x0 at t=0 on
the level m. This conditional probability is the Green’s func-
tion for Pn�x , t� satisfying

Pn�x,t� = �
m
� dx0Pnm�x,t	x0,0�Pm�x0,0� �3�

with the initial condition

Pnm�x,0	x0,0� = �nm��x − x0� . �4�

The time evolution of Pnm is governed by

�tP�x,t	x0,0� = L̂�x,t� · P�x,t	x0,0� , �5�

where we have introduced a matrix notation with

P = 
P11 P12

P21 P22
� �6�

and L̂ is a matrix of Fokker-Planck operators that we write as

L̂�x,t� = L̂0�x� + L̂��x,t� , �7�

where L̂� represents contributions due to time-dependent ex-
ternal perturbations. The time-independent part of the opera-
tor can be written as �Fig. 1�

L̂0 = − �̂ + ��x − x1�K1 + ��x − x2�K2, �8�

where

�̂ = �x
− G1� − �x 0

0 − G2� − �x
� � �xĴ �9�

and Gn��dGn /dx. The two terms in the diagonal elements of
Eq. �9� represent fluxes due to active transport in the over-
damped regime and diffusion, respectively, and we have cho-
sen the inverse diffusion coefficient and kBT as the units of
time and energy to simplify the notation. The two singular
terms in Eq. �8� with

K1 = 
− k−1 k1

k−1 − k1
�, K2 = 
− k2 k−2

k2 − k−2
� �10�

represent the contributions to the flux due to reactions. Since
a time-dependent perturbation f�t� to the static force f0
would add to −Gn� in Eq. �9�, the operator representing the
perturbation can be written as

L̂��x,t� = − f�t�I�x, �11�

where I is the identity matrix.

III. STATIONARY PROPERTIES

Irrespective of the initial condition at t=0, the probability
density approaches the unique stationary distribution in the
long time limit when f�t�=0,

P�x,�	x0,0� = �P̄�x� P̄�x�� � 
P̄1�x� P̄1�x�

P̄2�x� P̄2�x�
� . �12�

The stationary density P̄�x� satisfies

L̂0 · P̄ = 0. �13�

From Eq. �8�, L̂0=−�xĴ for x�xn. For decoupled levels
�k�n=0�, it can be shown that the stationary solution is pe-
riodic even when f0�0 �Ref. �23�, p. 288�. We assume

P̄n�x+1�= P̄n�x� to be valid generally, which is validated by
the solution obtained and its uniqueness. It is therefore suf-

ficient to limit the range of x to 0�x�1 with �lP̄�x+ l�
→ P̄�x�. Dividing the period of x into three nonsingular re-
gions 0�x�x1 �j=1�, x1�x�x2 �j=2�, and x2�x�1 �j
=3�, Eqs. �9� and �13� give


− Gn� −
d

dx
�P̄n

�j� = Jn
�j� = const, �14�

where Jn
�j� is the stationary flux on level n within the region j.

Imposing boundary conditions at x=0,x1 ,x2 ,1 to the general
functional form of the solution to �14� �21,22�, the following
solution can be obtained �Appendix A�:

k
1

x1

G 1

G
2

2k
−2k

−1
k

xs x2 x0 1

FIG. 1. �Color online� Two level model of a spatial coordinate
0�x�1 in periodic boundaries with two potentials G1 and G2,
coupled at x=x1 and x=x2 each with rates k�1 and k�2. Location of
the minimum of model potential depicted is denoted as xs �Eqs. �62�
and �63��. Curved arrows illustrate an example of local fluxes re-
sulting from a k2 value larger than that for equilibrium condition;
solid �red� arrows indicate fluxes larger in magnitude than those
with dashed �blue� arrows, and the velocity is positive, while the
reactive flux is in counterclockwise direction.
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P̄1 = Ae−G1�x��
1 +

�1 − e−f0�w1

g1 + h1
−

w1m1�m2

m1g1Q
�1 − 
1 − e−f0

g1 + h1
−

m1�m2

m1g1Q
�1��

0

x

dx�eG1�x�� �0 � x � x1� ,

1 − 
1 − e−f0

g1 + h1
+

m1�m2

m1h1Q
�1��

x1

x

dx�eG1�x�� �x1 � x � x2� ,

m1�

m1

1 −

m2

Q
�1� − 
1 − e−f0

g1 + h1
−

m1�m2

m1g1Q
�1��

x2

x

dx�eG1�x�� �x2 � x � 1� ,
�

P̄2 =
A

Q
e−G2�x��

ef0M +
�1 − ef0�u2

g2h2
F −

ef0u2m1�

g2
�3 − 
1 − e−f0

g2h2
F +

m1�

g2
�3��

0

x

dx�eG2�x�� �0 � x � x1� ,

L − 
1 − e−f0

g2h2
F −

m1�

h2
�2��

x1

x

dx�eG2�x�� �x1 � x � x2� ,

M − 
1 − e−f0

g2h2
F +

m1�

g2
�3��

x2

x

dx�eG2�x�� �x2 � x � 1� ,
� �15�

where

�1 = c1k2d2k1 −
m1m2�

m1�m2
c2k−2d1k−1, �16a�

�2 = c1k2d2k1 −
m1

m1�
c2k−2d1k−1, �16b�

�3 = c1k2d2k1 −
m1e−f0

m1�
c2k−2d1k−1, �16c�

M = m1�m2�c1k2 + m1m2�d1k−1 + c1k2�m1�d2k1 + m2�d1k−1� ,

�17a�

L = m1�m2c1k2 + m1m2d1k−1 + d1k−1�m1c2k−2 + m2c1k2� ,

�17b�

Q = m1m2�c2k−2 + m1m2d2k1 + d2k1�m1c2k−2 + m2c1k2� ,

�17c�

F = c1k2�d1k−1 + m1�� + m1d1k−1, �17d�

dn=e−Gn�x1�, cn=e−Gn�x2�, wn=�0
x1dxeGn�x�, hn=�x1

x2dxeGn�x�, un

=�x2

1 dxeGn�x�, gn=un+e−f0wn, mn=1 /hn+1 /gn, and mn�=1 /hn

+e−f0 /gn. The normalization constant A is determined by

�0
1dx�P̄1+ P̄2�=1. The stationary velocity v0=J1

�j�+J2
�j� is in-

dependent of j,

v0

A
= �1 − e−f0�
 1

g1 + h1
+

F

g2h2Q
� +

m1�

m1Q

m2

h1
�1 −

m1

h2
�2� .

�18�

Also of interest is the reactive flux r0, or the “ATPase rate,”
the rate of ATP consumption when k2 corresponds to the ATP

binding and/or hydrolysis step. It is defined as the flux of 2
←1 transition at the reaction location x2,

r0 = Am1�m2
�1

Q
. �19�

The corresponding flux at x1 is −r0, such that the total net
flux between the two levels vanishes in the stationary state.
We also note that v0 and r0 are linearly related with respect
to changes in k�n,

v0 = A�1 − e−f0�
 1

g1 + h1
+

F

g2h2Q
� − A

m1��2

h2Q
+

r0

m1h1
.

�20�

This linear dependence between the velocity and ATPase rate
has previously been noted via regression of the numerical
solution using sawtooth potentials in Ref. �25�.

We can identify the two terms of Eq. �18� for velocity as
the main contributions due to force and reactions, respec-
tively. If f0 is increased with constant rates, v0 increases
mainly in response to the mechanical driving force, while the
reactive flux r0 remains nearly constant. On the other hand, if
one for instance increases k2 away from its equilibrium value
while keeping other rates and f0 constant, both v0 and r0
increase.

A. Decoupled level

A special case of interest is when rate constants vanish
and the two levels are decoupled. The model then reduces to
the description of Brownian motion on a periodic potential
under external force, which has been analyzed in detail by
Risken �23�. Setting k2=0 and k−1=0 such that the level n
=2 is inaccessible from n=1, Eq. �15� becomes
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P̄1�x� = Ae−G1�x�
1 −
1 − e−f0

g1 + h1
�

x1

x

dx�eG1�x���
= Ae−G1�x��1 −

1 − e−f0

�
0

1

dx�eG1�x��
�

0

x

dx�eG1�x���
= A�e−G1�x��

x

x+1

dx�eG1�x��, �21�

where in the second line we have set x1=0 since xn are arbi-
trary without reactions, and G1�x+1�=G1�x�− f0 was used in
the third line with A�=A /�0

1dxeG1�x�. The third line is equiva-
lent to Eq. �2.36� of Ref. �6�. The velocity can be obtained
from Eq. �18�, or read off as the negative of the coefficient of
the second term in the second line of Eq. �21�,

v0 =
A�1 − e−f0�

�
0

1

dx�eG1�x��

. �22�

B. Zero force

As Eq. �21� makes it clear, equilibria on periodic poten-
tials are in general precluded either with or without reactions

if f0�0. If f0=0, Eq. �15� shows that the deviation of P̄n
from the equilibrium Boltzmann distribution is controlled by

� = c1k2d2k1 − c2k−2d1k−1 �23�

with �1=�2=�3=�. The detailed balance conditions at the
two reaction locations x1 and x2 read c1k2=c2k−2 and d2k1
=d1k−1, respectively �Fig. 1�, which implies �=0, M =L=Q,

and P̄n�x�=Ae−Gn�x�. The stationary velocity at zero force
simplifies to

v0 = A
 1

h1g2
−

1

h2g1
� �

Q
, �24�

which is nonzero only if ��0. Symmetry of the potentials
and xn values also can lead to v0=0 irrespective of �: For
example, if x1=0, x2=1 /2, and Gn�x�=Gn�1−x�, gn=hn and
v0=0.

For concreteness, we choose the rate k2 to be the main
step which drives the system out of equilibrium, and write

k2 = k2
�0�e�	 � �1 + z�k2

�0�, �25�

where k2
�0� is the value of the rate satisfying detailed balance

for f0=0, and �	=ln�1+z� is the difference in chemical po-
tential of the fuel species from its equilibrium value. If cer-
tain values of k1 and k2

�0� are chosen and the reverse rates are
given by

k−2 = e−�G1
�0��x2�−G2

�0��x2��k2
�0�, �26a�

k−1 = e−�G2
�0��x1�−G1

�0��x1��k1, �26b�

the single parameter z ��ATP�− �ATP�eq in the buffer� can
describe the departure from equilibrium �z=0�. From Eqs.

�16� and �17c�, it is clear that Eqs. �24� and �19� lead to a
Michaelis-Menten-type kinetics with respect to z. Equation
�24�, in particular, is expected to be useful in optimizing the
maximum velocity with respect to potentials and reaction
locations in designing artificial motors.

IV. DYNAMICAL RELAXATION

A. Linear response theory

With a small but nonvanishing perturbation f�t�, the ve-
locity v�t� would show small deviations from the stationary
value given by Eq. �18�. With Eq. �2�, this velocity is given
by �6�

v�t� = �
n
� dx�f�t� − Gn��x��Pn�x,t�

= f�t� − �
n
� dxGn��x�Pn�x,t� , �27�

where the normalization condition

�
n
� dxPn�x,t� = 1 �28�

was used. The temporal response �v=v�t�−v0, on the other
hand, can be written as

�v�t� = �
−�

t

dt�R�t − t��f�t�� , �29�

where R�t� is the response function, a characteristic property
of the stationary state on which f�t� acts. The response func-
tion is independent of f�t� in the linear response regime. We
follow Ref. �23� to relate R�t� to P below. Writing the prob-
ability density Pn�x , t� as

P�x,t� = P̄�x� + p�x,t� , �30�

where p�x , t� is the time-dependent part due to perturbation,
we have from Eq. �27�,

�v�t� = f�t� − �
n
� dxGn��x�pn�x,t� . �31�

From Eqs. �5�, �7�, and �13�, the time evolution of pn is given
by

�tp�x,t� = L̂�x,t� · P�x,t� � L̂0�x� · p�x,t� + L̂��x,t� · P̄�x� ,

�32�

where only the terms first order in perturbation have been
kept. Equation �32� can be integrated as

p�x,t� = �
−�

t

dt�e�t−t��L̂0�x� · L̂��x,t�� · P̄�x� . �33�

Equations �11�, �29�, �31�, and �33� give
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R�t� = ��t� +� dxG� · etL̂0�x� · �xP̄

= ��t� +� � dxdx0G��x� · etL̂0�x� · ��x − x0�I · �x0
P̄�x0�

= ��t� +� � dxdx0G��x� · P�x,t	x0,0� · �x0
P̄�x0� , �34�

where in the third line, the formal solution to Eqs. �5� and �4�
was used.

From Eq. �14�, we have �xP̄n
�j��x�=−Gn��x�P̄n

�j��x�−Jn
�j�,

which allows us to write

R�t� = R0�t� − �
nm
� � dxdx0Gn��x�Pnm�x,t	x0,0�Jm�x0� ,

�35�

where Jm�x0�=Jm
�j� for x0� j, and

R0�t� = ��t� − �
nm
� � dxdx0Gn��x�Pnm�x,t	x0,0�


 Gm� �x0�P̄m�x0� �36�

is the time correlation function of the force due to potentials.
The second term in Eq. �35� is nonzero only away from
equilibrium where Jm�0 and represents the deviation from
the standard fluctuation dissipation theorem. In Eq. �34�, the
� function at t=0 represents the inertial response due to the
external perturbation only: v�t�=�−1f�t� in the physical unit
where � is the friction coefficient if Gn�x�=0. The second
term represents the effects of dissipative media to the re-
sponse, which we expect is negative in sign, reducing the
amount of instantaneous response one would have in the
absence of dissipation.

Since we have reduced the range of x to one period only
for the stationary solution in Sec. III, the integrals over x in
this section are unrestricted, while those over x0 are for 0
�x0�1. However, in the integrand of Eq. �34�, Gn��x�
=Gn

�0���x�− f0 is periodic in x, and by introducing the reduced
conditional probability

P̂nm�x,t	x0,0� = �
l

Pnm�x + l,t	x0,0� , �37�

the range of integration over x can be reduced to one period
as well. This reduction also implies that although
P�x , t 	x0 ,0� is not necessarily periodic with respect to x,

P̂�x , t 	x0 ,0� is always periodic. We will therefore drop the

hat from P̂ in the following and restrict the spatial range of x
to 0�x�1.

B. Calculation of conditional probability

Equation �34� relates the response function to the prob-
ability densities of the model, and in particular, shows that its
time dependence directly reflects that of P in the absence of
perturbation. In this section, the full Fokker-Planck equation
�5� is related to an eigenvalue equation, whose solution re-

flects the relaxation behavior of P�x , t 	x0 ,0� toward P̄�x�.
Since the matrix of operators L̂ cannot easily be related to a
Hermitian operator in the presence of reactions �Eq. �10��,
the standard technique of transforming �̂ into a Schrödinger-
type Hermitian operator �23�, whose eigenfunctions form a
complete set, is not readily applicable. We instead proceed
by taking the Laplace transform of both sides of Eq. �5� with

L̂�=0 to get

sP̃�x,s	x0� − L̂0�x� · P̃�x,s	x0� = ��x − x0�I , �38�

where

P̃�x,s	x0� = �
0

�

dte−stP�x,t	x0,0� �39�

and Eq. �4� was used. We then use the Fourier series expan-
sion for the x dependence,

P̃�x,s	x0� � �
l=−N

N

e2�ilxCl, �40�

where Cl=Cl�s ,x0� are 2
2 matrices of complex coeffi-
cients. Substituting Eq. �40� into Eq. �38�, multiplying on the
left-hand side by e−2�ikx and integrating, we get

�
l=−N

N

�s�klI − Lkl� · Cl = e−2�ikx0I , �41�

where −N�k�N,

Lkl = �
0

1

dxe−2�ikxL̂0e2�ilx = − �kl + e2�i�l−k�x1K1 + e2�i�l−k�x2K2

�42�

and

�kl = �
0

1

dxe−2�ikx�̂e2�ilx �43�

is the matrix element of the operator �̂.
We introduce matrices of dimension 2�2N+1� formed by

tensor products of Fourier coefficients �k=−N , . . . ,N� and
levels �n=1,2�, and rewrite Eq. �41� as

B�s� · C = F�x0� , �44�

where

B�s� = sI − L , �45�

L, I, and B are 2�2N+1�-dimensional square matrices, C and
F are 2�2N+1�
2 matrices, and their elements are

�L�
,� = �Lkl�nm, �46a�

�I�
,� = �
,�, �46b�

�C�
,m = �Ck�nm, �46c�

�F�x0��
,m = e−2�ikx0�nm, �46d�
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 = 2�k + N� + n , �46e�

� = 2�l + N� + m , �46f�

where −N�k, l�N, n ,m=1,2, and 1�
, ��4N+2. In the
following, when roman and Greek indices appear together,
Eqs. �46e� and �46f� are implicitly assumed. Equation �44�
has the solution

C�s� = B−1�s� · F�x0� . �47�

To find B−1, we consider the eigenvalue equation for the
matrix L,

L · v
 = − �
v
. �48�

Diagonalizability of the non-Hermitian matrix L is not guar-
anteed but could always be done numerically in our applica-
tions. From Eq. �45�, we have

B · v
 = �s + �
�v
, �49�

and the eigenvalues and eigenvectors of B are �s+�
 ,v
�.
Introducing the matrix V whose columns are the eigenvec-
tors,

V = �v1 ¯ v4N+2� , �50�

Eq. �47� then can be written as

C�s� = W�s� · F�x0� , �51�

where

W�s� = V · �sI + ��−1 · V−1, �52�

and ���
,�=�
,��
. From Eqs. �40� and �51�, we have

P̃�x,s	x0� = F�x�† · W�s� · F�x0� �53�

or

P̃nm�x,s	x0� = �
k,l=−N

N

e2�i�kx−lx0��W�s��
,�. �54�

Since �sI+��−1 is diagonal, Eq. �53� can be Laplace inverted
easily, and we finally have

P�x,t	x0,0� = F�x�† · V · e−�t · V−1 · F�x0� �55�

or

Pnm�x,t	x0,0� = �
k,l=−N

N

e2�i�kx−lx0��V · e−�t · V−1�
,�. �56�

The relaxation behavior of P is thus closely linked to the
eigenvalue spectrum of the matrix L, which is made clearer
by rewriting Eq. �56� as

Pnm�x,t	x0,0� = �
�

e−��t�
k,l

e2�i�kx−lx0�V
,�V�,�
−1 . �57�

Equations �12� and �13�, in particular, imply that �=0��1 is
the eigenvalue whose eigenvector gives the stationary solu-
tion. Retaining only the term �1=0 in the first summation in
Eq. �57�, we write

P̄n�x� = �
k

e2�ikxV
,1�
l

e−2�ilx0V1,�
−1 . �58�

Imposing the normalization condition �28�, we have

�
n

V2N+n,1�
l

e−2�ilx0V1,�
−1 = 1. �59�

Using Eq. �59� for the second summation in Eq. �58� we
obtain

P̄n�x� = Nv�
k

e2�ikxV
,1, �60�

where

Nv =
1

V2N+1,1 + V2N+2,1
. �61�

V. RELAXATION BEHAVIOR

A. Model potentials

Two model potentials have been used in our application: a
“sawtooth” potential,

G1
�0��x� = �a�xs − x� �0 � x � xs� ,

b�x − xs� �xs � x � 1� ,
�

G2
�0��x� = g , �62�

where a�0 and b=axs / �1−xs� such that G1
�0� is periodic, and

an “asymmetric cosine” potential �similar to Fig. 1�,

G1
�0��x� = �

a

2

cos

�x

xs
+ 1� �0 � x � xs� ,

a

2

cos

��1 − x�
1 − xs

+ 1� �xs � x � 1� ,�
G2

�0��x� = g . �63�

In both potentials, the level n=2 is flat for simplicity. The
sawtooth potential �62� has been used widely in other studies
of ratchet models �5,6� and has the advantage of allowing
analytical calculation of P for special cases �Appendix C�,
which we use for testing the numerical method. The dynami-
cal variable Gn��x� to be averaged for velocity in Eq. �27�,
however, is discontinuous at x=0 and x=xs for Eq. �62�. The
asymmetric cosine potential �63� has a similar but smoother
topology, and is more realistic. The matrix elements given by
Eq. �43� for the two model potentials can be calculated ana-
lytically �Appendix B�.

B. Convergence test

We first test the convergence of Fourier expansion �40� by
comparing Eq. �54� with the exact expression given by Eq.
�C3� for the sawtooth potential. Numerical solutions to the
eigenvalue equation �48� can efficiently be obtained using
the LAPACK routine “zgeev” �26� for non-Hermitian com-
plex matrices. Since the eigenvector matrix is not unitary, the
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inverse V−1 is calculated via the routines “zgetrf” and “zge-
tri.” Figure 2 shows an example of the convergence of

P̃�x ,s 	x0� as a function of x for a given s value.
Equation �60� provides a way of calculating the stationary

distribution numerically. The convergence of this numerical
result to the exact analytical expression given by Eq. �15�
was tested �Fig. 3� for the asymmetric cosine potential �63�
with a representative nonequilibrium condition where z�0
and f0�0. For this condition, the system is far from equilib-
rium due to k2 larger than its detailed balance value, causing
the population inversion of n=1 and n=2 levels. The root-

mean-square errors of the results for P̃�x ,s 	x0� and P̄m�x�

shown in Fig. 4 suggest that the numerical results in general
converge rapidly.

C. Relaxation of conditional probability

Figure 5 illustrates a typical relaxation behavior of
P�x , t 	x0 ,0� calculated by Eq. �57� for the asymmetric cosine
potential, where the density profiles evolve from the initial
condition �4� to the asymptotic limit �12�. The rate constants
were chosen such that k2 is larger than the value correspond-
ing to detailed balance, resulting in a net flux n=2←1 at x2
and the opposite flux at x1. If the initial level is n=1 �Fig.
5�a��, for instance, population of the level n=2 does not rise
appreciably until the system reaches the reaction location x2
from x0 via relaxations on the level n=1. This time scale is
the characteristic relaxation time of the decoupled level n
=1, which for the flat potential is �0=1 /4�2�O�10−2� �Eq.
�C10��. The overall relaxation of the two coupled levels
therefore takes longer than the decoupled case ���O�10−1�
in Fig. 5�. Furthermore, it is reasonable to expect that since
the establishment of the stationary distribution requires inter-
level transitions, the relaxation time would largely depend on
the reactive flux r0: The increase of r0 together with velocity
v0 away from equilibrium would reduce the relaxation time.

D. Response function

Using Eq. �56�, the response function given by Eq. �34�
can be written as

R�t� = ��t� + �G̃��† · V · e−�t · V−1 · P̃�, �64�

where

�G̃��
 = �
0

1

dxe−2�ikxGn��x� � Ĝ
 �65�

and

0 0.2 0.4 0.6 0.8 1
x

0.0

0.2

0.4

0.6
P

N=2
N=4
N=8
N=16
Exact

FIG. 2. Laplace transformed conditional probability density

P̃�x ,s 	x0� as a function of x for a decoupled level of the sawtooth
potential �62�. Convergence of the numerical expansion �54� to the
analytical exact result given by Eq. �C3� are shown with increasing
N. The parameter values are a=2, xs=0.7, x0=0.1, and s=3.
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FIG. 3. Stationary probability density P̄m�x� �m=1 and m=2 are
the bottom and top groups, respectively� for the asymmetric cosine
potential �63�. The rate constants are k1=1.0, k2

�0�=0.1, with the
reverse rates given by Eqs. �26�. Parameters for the potential are
a=2, g=3, xs=0.7, x1=0.2, x2=0.8, and f0=0.5. The parameter z
=100 is producing a far from equilibrium condition with a popula-
tion inversion. The set of numerical results with increasing N were
calculated using Eq. �60�. The solid lines show the exact solution
given by Eq. �15�.
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FIG. 4. Root-mean-square errors of P̃�x ,s 	x0� and P̄m�x� of the
data shown in Figs. 2 and 3 with increasing N.
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�P̃��
 = �
0

1

dxe−2�ikxP̄n��x� = 2�ik�
0

1

dxe−2�ikxP̄n�x�

= 2�ikNvV
,1, �66�

where Eq. �60� was used in the second line. Equation �64�
can be then written as

R�t� = ��t� + 2�iNv�

,�

�
��2

Ĝ


*V
,�e−��tV�,�

−1 lV�,1, �67�

where we omitted the zero eigenvalue term; although V is
not necessarily unitary, we found that the contribution from
�1=0 always vanishes, and R���=0.

As a special case, the static response of velocity to force
is given by

Rs =
�v0

�f0
= �

0

�

dtR�t� , �68�

which becomes the mobility 	=v0 / f0 when f0→0. From Eq.
�67�,

Rs = 1 + 2�iNv�

,�

�
��2

Ĝ


*V
,���

−1V�,�
−1 lV�,1. �69�

The exact expression for the stationary velocity, Eq. �18�,
also has its numerical counterpart: From Eqs. �27� and �60�,

v0 = − Nv�



Ĝ


*V
,1. �70�

The dependence of Rs on f0 is illustrated in Fig. 6. Equa-
tion �69� and Eqs. �18� and �68� give yet another route of
checking the consistency of the numerical method with the
exact solution, illustrated with one set of data in Fig. 6 where
Eq. �69� with N=32 gives essentially exact results. Figure 7
shows the dependence of Rs on z representing the deviation
from equilibrium via Eq. �25�. In the absence of the dissipa-
tive media �Gn=0�, Rs=1 from Eq. �69�, which corresponds
to the standard overdamped response of velocity to force
��v=�−1�f0 in the physical units�. Dissipation generally re-
duces the overall velocity response from unity. The amount

of this dissipative reduction is seen to decrease in Figs. 6 and
7 as one goes farther away from equilibrium with increasing
z or f0.

Time dependence of this response is given by the velocity
response function, Eq. �67�, whose generic shape �Fig. 8�
consists of the inertial instantaneous response at t=0, and the
dissipative contribution which is negative in sign and decays
exponentially in time. An example of the velocity response
arising from this response function is illustrated in Fig. 8�b�
for the step function perturbation h�t�=��t�. For smoother
forms of perturbations likely encountered in experiments,
v�t� would exhibit different shapes without the cusp at t=0.

E. Relaxation time

Figure 9 shows the relaxation behavior of −R�t� for a set
of parameters with equilibrium �z=0� and nonequilibrium
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FIG. 5. �Color online� Relaxation of Pnm�x , t 	x0 ,0� as a function of x and t. Initial conditions are x0=0.1 and �a� m=1, �b� m=2.
Parameter values for the asymmetric cosine potential are the same as in Fig. 3. Numbers on dotted and dashed lines indicate the time t. Solid
lines are the stationary profiles given by Eq. �15�.
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FIG. 6. �Color online� Static velocity response Rs as a function
of static force f0. The asymmetric cosine potential �63� was used
with different z and f0 values, and the rest of the parameters as in
Fig. 3. z=0 corresponds to the equilibrium condition at f0=0. The
long dashed red line is from Rs=�v0 /�f0 with Eq. �18�, nearly in-
distinguishable from the numerical result via Eq. �69� with N=16.
The rest of the data are from Eq. �69� with N=32.
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�z�0� conditions. As t becomes large, the relaxation be-
comes dominated by contributions due to eigenvalues with
lowest nonzero real part in Eq. �67�. With the eigenvalues
and eigenvectors ordered such that Re��2��Re��3��¯,
Fig. 9 reveals the set of time scales

�
 =
1

Re��
�
�71�

with 
=2,3 , . . . . Relaxations farther away from equilibrium
become increasingly dominated by �2, which itself becomes
smaller as z increases.

Dependence of the relaxation rates on model conditions
can thus be examined via �2. In particular, we compare this
dependence with those of stationary velocity and ATPase
rate. The velocity v0 given by Eqs. �18� or �70� and the

reactive flux r0 �Eq. �19�� as functions of z for fixed f0 show
the Michaelis-Menten-type behavior �Fig. 10�. The relax-
ation time �2, in contrast, decreases monotonically away
from equilibrium. While the absolute value of the velocity is
sensitive to changes in force f0, both r0 and �2 are insensitive
to the changes in force. In particular, if the time scale is
plotted as a function of v0 and r0 instead �Fig. 11�, �2 linearly
decreases with respect to v0 and r0 if the departure from
equilibrium is due to the chemical driving force, z. When the
system is driven primarily via the mechanical driving force
f0, in contrast, �2 is nearly constant for a very wide range f0,
while r0 does not change appreciably.

The fact that the dependence of characteristic relaxation
time on system conditions closely follows that of the reactive
flux can be understood from the requirement for interlevel
crossing in the establishment of stationary distribution. A
large mechanical force, resulting in high values of velocity
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FIG. 7. Static velocity response Rs as a function of z. The pa-
rameter values are the same as for Fig. 6.
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FIG. 8. Response function and an example of velocity response.
�a� R�t� for the parameter values same as in Fig. 6 with f0=0 and
z=0. Vertical line at t=0 represents the � function. �b� v�t� given by
Eq. �29� with f�t�=��t�. v���=Rs�f0=0� in Fig. 6.
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FIG. 9. �Color online� Magnitude of the nonsingular part of R�t�
as a function of t. The parameter values are the same as in Fig. 6
with f0=0. For two values of z �equilibrium and nonequilibrium�,
the total response function given by Eq. �67� is shown together with
the contributions of two eigenvalues with the lowest nonzero real
part, �2 and �3.

0 20 40 60 80 100
z

0.0

0.2

0.4

0.6

0.8

v 0
,r

0,
τ 2

v0, f0=0
v0, f0=0.3
r0, f0=0
r0, f0=0.3
τ2, f0=0
τ2, f0=0.3

FIG. 10. �Color online� Stationary velocity v0, reactive flux r0

�given by Eqs. �18� or �70� and �19��, and the relaxation time �2

with increasing z, shown for two different values of f0. Other pa-
rameter values are the same as in Fig. 6.
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without facilitating interlevel crossing, leaves the relaxation
behavior largely unaffected. This behavior quantifies the
trend observed earlier in the relaxation of P�x , t 	x0 ,0� in Fig.
5, where the overall relaxation must wait until the initial
distribution spreads to the reaction locations and crosses over
to the other level via reactions.

VI. DISCUSSION

Brownian ratchet models directly tackle the interplay of
mechanical and chemical degrees of freedom, and our gen-
eral expressions of stationary velocity and ATPase rate, Eqs.
�18� and �19�, summarize the effects of the two different
sources of nonequilibrium behavior. Our choice of model
potentials �Eqs. �62� and �63��, appropriate for examining
thermal ratchet effects, represents relatively loose coupling
between the chemical and mechanical degrees of freedom. A
velocity increase upon force can therefore be achieved with-
out the corresponding increase in the reactive flux; the motor
complex can “slide” along within each level without appre-
ciable reactions. When the motion is being driven mainly via
chemistry �high �	�, on the other hand, both the velocity
and ATPase rate are large in magnitude. A different limit is
where the chemical and mechanical parts are tightly coupled
as assumed within discrete state kinetic models of molecular
motors �27�. In this limit, there is no distinction between the
reactive flux and velocity.

The main results of our study suggest that a Brownian
ratchet responds to external perturbations with a time scale
that decreases linearly with v0 and r0 when driven by chemi-
cal nonequilibrium conditions. When the motion is primarily
due to mechanical force �v0 large but r0 small� the relaxation
time remains largely unchanged. We expect this prediction to
be testable in single molecule experiments using mechanical
or spectroscopic means.

The exact solution obtained for stationary properties in
Sec. III greatly aides the understanding of the model predic-
tions. Determining the solution nevertheless becomes rapidly

unmanageable with more than two levels or two reaction
sites. The numerical method described in Sec. IV is easily
generalized to such cases, and provides an efficient route to
determine both the static and dynamical properties of related
models.
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APPENDIX A: STATIONARY SOLUTION

The boundary conditions for P̄n�x� are the periodicity at
x=0,1, the continuity at x=xn, and the balance of fluxes at
these locations obtained by integrating Eq. �13� over an in-
finitesimal region near the singular points:

P̄n
�1��0� = P̄n

�3��1� , �A1a�

Jn
�3� − Jn

�1� = 0, �A1b�

P̄n
�1��x1� = P̄n

�2��x1� , �A1c�

J1
�2� − J1

�1� = k1P̄2
�2��x1� − k−1P̄1

�2��x1� , �A1d�

J2
�2� − J2

�1� = k−1P̄1
�2��x1� − k1P̄2

�2��x1� , �A1e�

P̄n
�2��x2� = P̄n

�3��x2� , �A1f�

J1
�3� − J1

�2� = k−2P̄2
�3��x2� − k2P̄1

�3��x2� , �A1g�

J2
�3� − J2

�2� = k2P̄1
�3��x2� − k−2P̄2

�3��x2� , �A1h�

where n=1,2. From Eq. �14�, we can write

P̄n
�1��x� = e−Gn�x�
An

�1� − Jn
�1��

0

x

dx�eGn�x��� ,

P̄n
�2��x� = e−Gn�x�
An

�2� − Jn
�2��

x1

x

dx�eGn�x��� ,

P̄n
�3��x� = e−Gn�x�
An

�3� − Jn
�3��

x2

x

dx�eGn�x��� . �A2�

Using Eq. �A2� and Gn�1�=Gn�0�− f0, the boundary condi-
tions �A1� become

e−f0A1
�1� = A1

�3� − u1J1
�3�, �A3a�

e−f0A2
�1� = A2

�3� − u2J2
�3�, �A3b�

J1
�1� = J1

�3�, �A3c�

J2
�1� = J2

�3�, �A3d�
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FIG. 11. �Color online� Dependence of relaxation time on ve-
locity and reactive flux, increased in two different ways: By increas-
ing z with f0=0 �black�, and by increasing f0 for a given z �z=0;
blue, z=10; red�. Other parameter values are the same as in Fig. 6.
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A1
�1� − w1J1

�1� = A1
�2�, �A3e�

A2
�1� − w2J2

�1� = A2
�2�, �A3f�

J1
�2� − J1

�1� = d2k1A2
�2� − d1k−1A1

�2�, �A3g�

J2
�2� − J2

�1� = d1k−1A1
�2� − d2k1A2

�2�, �A3h�

A1
�2� − h1J1

�2� = A1
�3�, �A3i�

A2
�2� − h2J2

�2� = A2
�3�, �A3j�

J1
�3� − J1

�2� = c2k−2A2
�3� − c1k2A1

�3�, �A3k�

J2
�3� − J2

�2� = c1k2A1
�3� − c2k−2A2

�3�. �A3l�

Only 11 of 12 relations in Eqs. �A3� are independent, since
Eqs. �A3c�+ �A3d�+ �A3g�+ �A3h�+ �A3k�+ �A3l�=0.
These 11 relations and the normalization condition determine
the 12 coefficients, �An

�j� ,Jn
�j�� for n=1,2 and j=1,2 ,3. Alter-

natively, we can set one of the coefficients arbitrarily in
terms of the normalization constant A and determine the rest
using the 11 boundary conditions: We choose A1

�2�=A.
We first eliminate An

�1� ,Jn
�1� in Eqs. �A3e�–�A3h� using

Eqs. �A3a�–�A3d�,

ef0A1
�3� − �ef0u1 + w1�J1

�3� = A , �A4a�

ef0A2
�3� − �ef0u2 + w2�J2

�3� = A2
�2�, �A4b�

J1
�2� − J1

�3� = d2k1A2
�2� − d1k−1A , �A4c�

J2
�2� − J2

�3� = d1k−1A1
�2� − d2k1A2

�2�. �A4d�

From Eqs. �A4a�, �A4b�, �A3i�, and �A3j� we have

J1
�3� =

1

w1 + u1ef0
�ef0A1

�3� − A� , �A5a�

J2
�3� = −

1

w2 + u2ef0
�A2

�2� − ef0A2
�3�� , �A5b�

J1
�2� =

1

h1
�A − A1

�3�� , �A5c�

J2
�2� =

1

h2
�A2

�2� − A2
�3�� . �A5d�

Substituting Eqs. �A5a�–�A5d� into Eqs. �A3k�, �A3l�, and
�A4c�, we obtain

c2k−2A2
�3� − �c1k2 + m1�A1

�3� + m1�A = 0, �A6a�

�m2 + c2k−2�A2
�3� − m2�A2

�2� − c1k2A1
�3� = 0, �A6b�

�m1� + d1k−1�A − m1A1
�3� − d2k1A2

�2� = 0. �A6c�

Equation �A6c� gives

A1
�3� = ��m1� + d1k−1�A − d2k1A2

�2��/m1, �A7�

which can be substituted into Eq. �A6b� to give

A2
�3� =

�c1d1k2k−1 + m1�c1k2�A + �m1m2� − c1k2d2k1�A2
�2�

m1�m2 + c2k−2�
.

�A8�

We then substitute Eqs. �A7� and �A8� into Eq. �A6a� and
solve for A2

�2�, which yields after some algebra,

A2
�2� = AL/Q , �A9�

where L and Q are given by Eqs. �17b� and �17c�. Equation
�A9� substituted into Eq. �A8� gives

A2
�3� = AM/Q , �A10�

where M is given by Eq. �17a�. Using Eq. �A9� in Eq. �A7�
and simplifying, one obtains

A1
�3� = A

m1�

m1

1 −

m2

Q
�1� , �A11�

where �1 is given by Eq. �16a�. Equations �A5c� and �A11�
now yield

J1
�2�/A = −

1

h1

m1�

m1
− 1� +

m1�m2�1

m1h1Q
=

1 − e−f0

g1 + h1
+

m1�m2�1

m1h1Q
,

�A12�

and Eqs. �A5d�, �A9�, and �A10� give

J2
�2� =

A

h2Q

1 − e−f0

g2
F − m1��2� , �A13�

where F and �2 are given by Eqs. �17d� and �16b�, respec-
tively. From Eqs. �A5a� and �A11� we have

J1
�3�/A =

1 − e−f0

g1 + h1
−

m1�m2�1

m1g1Q
, �A14�

while Eqs. �A5b�, �A9�, and �A10� yield

J2
�3� =

A

g2Q

1 − e−f0

h2
F + m1��3� , �A15�

where �3 is given by Eq. �16c�. Equation �A3e� gives

A1
�1�/A = 1 +

�1 − e−f0�w1

g1 + h1
−

w1m1�m2

m1g1Q
�1, �A16�

and finally Eq. �A3b�,

A2
�1� =

A

Q

ef0M +

�1 − ef0�u2F

g2h2
−

ef0u2m1�

g2
�3� . �A17�

Equations �A16�, �A3c�, �A12�, �A14�, �A11�, �A17�, �A3d�,
�A9�, �A13�, �A10�, and �A15� complete the solution written
as Eq. �15�.

The stationary velocity v0 can be evaluated as v0=J1
�j�

+J2
�j� for any j, since the total flux is independent of x.

Choosing j=2 directly yields Eq. �18�. The reactive flux r0,
defined as the flux n=2←1 at x2, can be obtained as r0
=J1

�2�−J1
�3�, which gives Eq. �19�.

RELAXATION DYNAMICS NEAR NONEQUILIBRIUM… PHYSICAL REVIEW E 79, 021101 �2009�

021101-11



APPENDIX B: MATRIX ELEMENTS

From Eq. �8�, the matrix elements �43� for the sawtooth
potential �62� can be calculated as

��kl�11 = �a + b��1 + �1 − �kl�l/�k − l���1 − e2�i�l−k�xs�

+ �kl�4�2l2 + 2�ilf0� ,

��kl�22 = �kl�4�2l2 + 2�ilf0� , �B1�

and ��kl�12= �Ωkl�21=0. For the asymmetric cosine potential
�63�,

��kl�11 =
�ia

4

�2l + xs

−1�zl−k�xs� + �2l − xs
−1�z

k−l
* �xs�

− 
2l +
1

1 − xs
�z

l−k
* �1 − xs�

− 
2l −
1

1 − xs
�zk−l�1 − xs�� + �kl�4�2l2 + 2�ilf0� ,

��kl�22 = �kl�4�2l2 + 2�ilf0� , �B2�

and �Ωkl�12= �Ωkl�21=0, where

zk�x� = �1 + e2�ikx

1 + 2kx
if kx � − 1/2,

− �i if kx = − 1/2.
� �B3�

Elements of the vector G̃� in Eq. �65� for this potential can
also be written in terms of zk�x�,

�G̃��2�k+N�+1 =
ak

2
�xszk

*�xs� − xsz−k�xs� + �1 − xs�z−k
* �1 − xs�

− �1 − xs�zk�1 − xs�� − f0�k0,

�G̃��2�k+N�+2 = − f0�k0. �B4�

APPENDIX C: SAWTOOTH POTENTIAL

The Laplace transform P̃� P̃11�x ,s 	x0� can be obtained
analytically for a decoupled level n=1 of the sawtooth po-
tential �62�. Equation �38� in this case becomes

P̃� + G1�P̃� + �G1� − s�P̃ + ��x − x0� = 0, �C1�

where P̃�=dP̃ /dx and P̃�=d2P̃ /dx2. General solutions each
containing two multiplicative coefficients can be written for
three nonsingular regions �x�0,1 ,xs ,x0�. The boundary
conditions determining the coefficients are analogous to Eq.
�A1�,

P̃�0� = P̃�1� ,

P̃�xs
−� = P̃�xs

+� ,

P̃��0� − P̃��1� = �G1��1� − G1��0��P̃�0� ,

P̃��xs
+� − P̃��xs

−� = �G1��xs
−� − G1��xs

+��P̃�xs� ,

P̃��x0
+� − P̃��x0

−� + 1 = 0,

P̃�x0
+� = P̃�x0

−� . �C2�

1. General case

We only quote the results for the Laplace transform

P̃�x ,s 	x0� obtained by imposing the boundary conditions
�C2�, divided into two cases: For 0�x0�xs,

P̃ =�
ea�x−x0�/2

2sa�
�A1esax + B1e−sax� �0 � x � x0� ,

ea�x−x0�/2

2sa�
�A1�e

sax + B1�e
−sax� �x0 � x � xs� ,

e�b�1−x�−ax0�/2

�
�C1esb�x−1� + D1esb�1−x�� �xs � x � 1� ,

�
�C3�

where

A1 = 2sasb�e−x0sa − e�xs−x0�sa ch��1 − xs�sb��

− �a + b�
sa +
a

2
�e−�xs−x0�sa sh��1 − xs�sb�

− 
2s −
ab

2
�e�xs−x0�sa sh��1 − xs�sb� ,

B1 = − 2sasb�ex0sa − e−�xs−x0�sa ch��1 − xs�sb��

+ �a + b�
sa −
a

2
�e�xs−x0�sa sh��1 − xs�sb�

− 
2s −
ab

2
�e−�xs−x0�sa sh��1 − xs�sb� ,

A1� = − 2sasb�e−x0sa − ch��1 − xs�sb�e−�xs+x0�sa�

− �a + b�
sa +
a

2
�e−�xs−x0�sa sh��1 − xs�sb�

− 
2s −
ab

2
�e−�xs+x0�sa sh��1 − xs�sb� ,

B1� = 2sasb�ex0sa − ch��1 − xs�sb�e�xs+x0�sa�

+ �a + b�
sa −
a

2
�e�xs−x0�sa sh��1 − xs�sb�

− 
2s −
ab

2
�e�xs+x0�sa sh��1 − xs�sb� ,

C1 = − 
sb −
a + b

2
��sh�x0sa� + e�1−xs�sb sh��xs − x0�sa��

+ sa ch�x0sa� − e�1−xs�sbsa ch��xs − x0�sa� ,
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D1 = − 
sb +
a + b

2
��sh�x0sa� + e−sb�1−xs� sh��xs − x0�sa��

− sa ch�x0sa� + e−�1−xs�sbsa ch��xs − x0�sa� , �C4�

ch z=cosh z, sh z=sinh z, sa= �s+a2 /4�1/2, sb= �s+b2 /4�1/2,
and

� = 4sasb�1 − ch�xssa�ch��1 − xs�sb��

− �4s − ab�sh�xssa�sh��1 − xs�sb� . �C5�

For xs�x0�1,

P̃ =�
e�bx0+ax−b�/2

�
�A2esax + B2e−sax� �0 � x � xs� ,

eb�x0−x�/2

2sb�
�C2esbx + D2e−sbx� �xs � x � x0� ,

eb�x0−x�/2

2sb�
�C2�e

sb�x−1� + D2�e
sb�1−x�� �x0 � x � 1� ,

�
�C6�

where

A2 = − 
sa +
a + b

2
��sh��x0 − xs�sb�e−xssa + sh��1 − x0�sb��

+ sb�ch��x0 − xs�sb�e−xssa − ch��1 − x0�sb�� ,

B2 = − 
sa −
a + b

2
��sh��x0 − xs�sb�exssa + sh��1 − x0�sb��

− sb�ch��x0 − xs�sb�exssa − ch��1 − x0�sb�� ,

C2 = 2sasb�e−x0sb − e�1−xs−x0�sb ch�xssa��

+ �a + b��sb − b/2�e�x0−xs−1�sb sh�xssa�

− e−�x0+xs−1�sb�2s − ab/2�sh�xssa� ,

D2 = − 2sasb�ex0sb − e−�1−xs−x0�sb ch�xssa��

− �a + b��sb + b/2�e−�x0−xs−1�sb sh�xssa�

− e�x0+xs−1�sb�2s − ab/2�sh�xssa� ,

C2� = − 2sasb�e�1−x0�sb − e−�x0−xs�sb ch�xssa��

+ �a + b��sb − b/2�


e�x0−xs�sb sh�xssa� − �2s − ab/2�e−�x0−xs�sb sh�xssa� ,

D2� = 2sasb�e−�1−x0�sb − e�x0−xs�sb ch�xssa�� − �a + b��sb

+ b/2�e−�x0−xs�sb sh�xssa� − �2s − ab/2�e�x0−xs�sb sh�xssa� .

�C7�

2. Flat potential

If a=0, P̃�x ,s 	x0� simplifies considerably,

P̃ =
�1 − e�s�e−�s	x−x0	 + �e−�s − 1�e�s	x−x0	

4�s�1 − cosh �s�
. �C8�

This special case allows for analytical Laplace inversion via

P�x,t	x0,0� =
1

2�i
�

c−i�

c+i�

dsestP̃�x,s	x0� , �C9�

where c is real and larger than real parts of any singular
points in the complex plane. The branch cut can be chosen as
the negative real axis, and the singularities all lie on this axis
at s=−�2n��2, n=0,1 ,2 , . . . . The line integrals along the
branch cut cancel out, and one can obtain

P�x,t	x0,0� = 1 + 2�
n=1

�

e−�2�n�2t cos�2n��x − x0�� .

�C10�

It is readily seen that this solution satisfies P�x ,0 	x0 ,0�
=��x−x0� and P�x ,� 	x0 ,0�=1.

This result for the flat potential can also be verified from
the eigenvector matrix representation, Eq. �56�. When a=0,

from Eqs. �8� and �9� we have L̂0�x�=�x
2I, and Eq. �46a�

becomes �L�
,�=−4�2k2�kl�nm, with Eqs. �46e� and �46f�.
The eigenvalues and eigenvectors are therefore ���


=4�2k2 and V=I. Equation �57� then yields Eq. �C10� with
n=m=1.
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